

Strategies in Aspect Oriented Programming with
AspectJ

2002-11-20
By Gustav Evertsson, pt99gev@student.bth.se

Gustav Evertsson 2002-11-20 PAD004

 - 1 -

Contents
CONTENTS................................ 1
INTRODUCTION................................ 2
CROSSCUTTING BY DESIGN................................ 3

CATALOG OF ASPECTS 3
DESIGN BY CONTRACT AND OTHER CODING IMPROVEMENTS 3

DEVELOPMENT AIDS................................ 5
LOGGING................................ 5
TRACING 6
PROFILING................................ 7

RUNTIME IMPROVEMENTS................................ 8
BUFFERING 8
POOLING 10
CACHING................................ 10

COPING WITH CHANGE................................ 12
NEW LOGGING 12
NEW POOLING................................ 12

CONCLUSION 14
REFERENCES................................ 15

Gustav Evertsson 2002-11-20 PAD004

 - 2 -

Introduction
This paper is done as a part of the course Advanced Software Engineering (pad004) at
Blekinge Institute of Technology. The paper is written in a way to try to explain different
strategies with Aspect Oriented programming by showing some example written in
AspectJ[1]. All code examples in this report comes from the book ” Aspect-Oriented
Programming with AspectJ„ by Ivan Kiselev[2].

Gustav Evertsson 2002-11-20 PAD004

 - 3 -

Crosscutting by Design

Catalog of Aspects
Aspects can be divided into three major groups depending on what they are used for.

• First we have the aspects that the final software works well without. These are called
development aspects. They are limited to only be useful during development.
Examples of these is logging, tracing and profiling.

• An aspect that must be included for the system to work is called product aspects.

Examples in this group are Authentication and Exception handling.

• The third group is aspects that make the program work better but they are not required
for the program to function. These are called runtime aspects. Example of these is
aspects that raise performance like pooling, caching and buffering.

Because it is so easy to make different compile script can the development aspects be
excluded from the final version and stress tests can be done to see how much the runtime
aspects raise the performance.

Design by Contract and Other Coding Improvements
Design by contract is that all methods in the system must take care of their part. This include
that all pre condition are fulfilled such as checking that the input parameters are correct. The
most common way to do this is to have a small if statement in the beginning of all method
that checks so the parameters are not null. This can instead be moved to an aspect that can
check it for many methods with the same code.

package aspects;

public aspect NullChecker
{
 pointcut arguments(): execution(* *.*(..));

 before() : arguments()
 {
 Object args[] = thisJoinPoint.getArgs();
 for(int i=0; i<args.length; i++)
 {
 if(null == args[i])
 {
 throw new IllegalArgumentException("The argument is “ +
 "null.");
 }
 }
 }
}

The aspect only contains a small loop that goes through all the arguments and look for null. It
will cast an IllegalArgumentException if it found one. The post-condition checking can be
conducted similarly using the after advice.

Good design techniques can also be enforsed using AspectJ static crosscutting. One example
where this can be a problem is when you designing a multi layered program and you only

Gustav Evertsson 2002-11-20 PAD004

 - 4 -

want a layer to talk to the layer direct under it. This code below can be used to for example
see that no class jumps over the data handler layer and calls the database direct. It checks so
all calls to the getConnection method comes within the db package. There are two levels of
messages that can be generated; warnings and errors.

package aspects;

import java.sql.*;

public aspect CodeSegregation
{

 pointcut dbCode() : call(
 Connection DriverManager.getConnection(..));
 pointcut badDbCode(): dbCode() && !within(db.*);
 pointcut reallyBadDbCode(): badDbCode() && !within(security.*) &&
 !within(servlets.*);

 declare warning: badDbCode() : "Database code outside 'db'
package.";
 declare error : reallyBadDbCode(): "Database code here is not
permitted.";
}

Gustav Evertsson 2002-11-20 PAD004

 - 5 -

Development Aids
The capability of aspects to affect a lot of code at once can help to devise a set of tools to help
the application development. These aspects cleanly and transparently allow us to get a better
handle on what is going on with the application [2].

Logging
The easiest is to make an aspect that picks everything, but that is normally too much. You will
miss the information you are looking for in the noise of all the information because even a
small program will generate rather much outputs. So the solution to this problem is to first
make an abstract aspect that takes care of the logging and then make new logging aspects that
extend that one. This has the advantage that you can easily add new logging that is more
precise than the more simple solution. It may still not be as precise as with logging direct in
the code but the code will be cleaner and it is easier to take away the logging for the final
release. As with all output will you get some performance penalty but that is only a problem
during debugging.

package aspects;

abstract public aspect Logger
{
 abstract pointcut logPoint();

 before() : logPoint && !within(Logger+)
 {
 System.out.println(thisJoinPoint.getTarget() + ‘, ‘ +
 thisJoinPoint.getThis() + ‘, “ +
 thisJoinPoint.getSignature());
 }
}

This is the main logging aspects, it handle the output, in this case just to the console. Note the
additional pointcut at the advice declaration. It is explicitly set not to fire if the execution flow
is inside the logger itself to prevent unlimited recursion when the logger advice itself.

package aspects;

public aspect myLogger1 extends Logger
{
 abstract pointcut logPoint() : execution(* myClass.*(..));

}

package aspects;

public aspect myLogger2 extends Logger
{
 abstract pointcut logPoint() : initialization(myClass.new(..));

}

This two aspects extends the Logger aspect and override the logPoint() pointcut to decide
what to log. The first example logs all executions of methods in the myClass class. The
second example logs when a new instance of myClass is created. You can develop an
unlimited number of logging aspects in the same way as these two examples with more
advanced pointcuts to be more accurate in the logging.

Gustav Evertsson 2002-11-20 PAD004

 - 6 -

Tracing
A tracer can be a very useful tool when it comes to debugging a program. The output is in
some ways similar to the logging but have some more distinct functional requirements. First
of all is that you only track method calls, and you want to have control over the stack so you
can see from where the method calls come from.

package aspects;

import java.util.*;

public aspect Tracer
{
 pointcut tracePoint() : execution(* *.*(..)) && !within(Tracer);

 private static Map stackDepth = new HashMap();

 before() : tracePoint()
 {
 Integer depth = (Integer)stackDepths.get(Thread.currentThread());
 if(depth == null)
 {
 depth = new Integer(0);
 }
 System.out.println(depth.intValue() + ‘ >> “ +
 thisJoinPointStaticPart.getSignature());
 stackDepths.put(Thread.currentThread(), new
 Integer(depth.intValue() + 1));
 }

 after() : tracePoint()
 {
 Integer depth = (Integer)stackDepths.get(Thread.currentThread());
 depth = new Integer(depth.intValue() - 1);
 if(depth.intValue() == 0)
 {
 stackDepths.remove(Thread.currentThread());
 }
 else
 {
 stackDepths.put(Thread.currentThread(), depth);
 }
 System.out.println(depth.intValue() + ‘ >> ‘ +
 thisJoinPointStativPart.getSignature());
 }

 private static StringBuffer ident(int num)
 {
 StringBuffer ident = new StringBuffer();
 for(int I = 0; I < num; i++)
 {
 ident.append(� �);
 }
 ident.append(Integer.toString(num) + ‘ [‘ +
 Thread.currentThread().hashCode() + ‘]“);
 return ident;
 }

}

This example is divided into five parts. The first is the pointcut that picks all method calls in
the program except within the aspect itself. The next part is the static counter. This is made as
a Map so it can work in a multithreaded environment such as JSP pages. So every thread will
have its own depth counter and the thread itself is the key in the list. This works this way

Gustav Evertsson 2002-11-20 PAD004

 - 7 -

because an aspect is singleton as default. The next two parts is the before and after advices
that do the actual work. Before creates a new counter if it is the first call and increases the
counter. After decrease the counter in the same way and deletes the counter if it reach zero.
This is a way of garbage collection for the counters. The last part is made to output the stack
depth and thread id so it is easy to follow the execution.

Profiling
After the tracing aspect is it not a long way to make a profiling aspect too. A profiling tool is
normally divided into two parts, first data collection and then data analysis. This example here
handles only the first part.

package aspects;

import java.io.*;
import org.aspectj.lang.SoftException;

public aspect Profiler
{
 pointcut prof(): call(* *.*(..)) && !within(aspects.*);

 FileOutputStream out;

 public Profiler() throws FileNotFoundException
 {
 out = new FileOutputStream("profile.txt");
 }

 before() : prof()
 {
 String record = "+ " +
 Thread.currentThread().hashCode()+" "+
 Long.toString(System.currentTimeMillis())+" "+
 thisJoinPointStaticPart.getSignature()+"\n";
 try
 {
 out.write(record.getBytes());
 }
 catch(IOException e)
 {
 throw new SoftException(e);
 }
 }

 after() : prof()
 {
 String record ="- "+
 Thread.currentThread().hashCode()+" "+
 Long.toString(System.currentTimeMillis())+" "+
 thisJoinPointStaticPart.getSignature()+"\n";
 try
 {
 out.write(record.getBytes());
 }
 catch(IOException e)
 {
 throw new SoftException(e);
 }
 }
}

The code is fairly easy. The constructor creates a new file that then before and after writes to.
Both write the current time in milliseconds and the signature of the method. The only
difference is that before writers a + and after a ’ in front of the line. This file can then be read
by a parser that calculates an average value for every method.

Gustav Evertsson 2002-11-20 PAD004

 - 8 -

Runtime Improvements
Here below is some ways to improve the runtime characteristics of your program. They are all
problem independent in the way that they can be used in a wide range of different systems.

Buffering
This example here below handle buffering for the FileOutputStream class and picks the
write(byte[]) method. Of course can buffering be used on other output streams as well but
may need some changes in for example buffer size and time between flushing.

package aspects;
import java.io.*;
import java.util.*;

public aspect OutputStreamBuffering implements Runnable
{
 private static Thread flushingThread = null;
 private static final int BUFF_SIZE=512;
 public class Buffer
 {
 byte[] buff = null;
 int counter = 0;

 Buffer()
 {
 buff = new byte[BUFF_SIZE];
 }
 }

 private Map buffTable = new HashMap();

 pointcut writeBytes(byte[] bytes):
 call(void FileOutputStream.write(byte[]))
 && args(bytes)
 && !within(OutputStreamBuffering);

 void around(byte[] bytes) throws IOException: writeBytes(bytes)
 {
 FileOutputStream out =
 (FileOutputStream)thisJoinPoint.getTarget();
 Buffer aBuff = (Buffer) buffTable.get(out);
 if(null == aBuff)
 {
 aBuff = new Buffer();
 buffTable.put(out, aBuff);
 }

 if(aBuff.counter + bytes.length > BUFF_SIZE)
 {
 synchronized(out)
 {
 out.write(aBuff.buff, 0, aBuff.counter);
 out.write(bytes);
 out.write(("*** buffer - "+aBuff.counter +
 "\n").getBytes());
 }

 buffTable.remove(out);
 }
 else
 {
 System.arraycopy(bytes, 0, aBuff.buff, aBuff.counter,
 bytes.length);
 aBuff.counter += bytes.length;

Gustav Evertsson 2002-11-20 PAD004

 - 9 -

 }

 if(null == flushingThread)
 {
 flushingThread = new Thread(this);
 flushingThread.setDaemon(true);
 flushingThread.start();
 }

 }

 before() throws IOException : call(void FileOutputStream.close())
 {
 FileOutputStream out =
 (FileOutputStream)thisJoinPoint.getTarget();
 Buffer aBuff = (Buffer) buffTable.get(out);
 if(null != aBuff)
 {
 synchronized(out)
 {
 out.write(aBuff.buff, 0, aBuff.counter);
 }
 buffTable.remove(out);
 }
 }

 public void run()
 {
 while(true)
 {
 try
 {
 Thread.sleep(3000);
 flush();
 }
 catch(Throwable e) {}
 }
 }

 void flush() throws IOException
 {
 for(Iterator i=buffTable.keySet().iterator(); i.hasNext();)
 {
 FileOutputStream out = (FileOutputStream)i.next();
 Buffer aBuff = (Buffer) buffTable.get(out);
 synchronized(out)
 {
 out.write(aBuff.buff, 0, aBuff.counter);
 out.write(("*** flushed - "+aBuff.counter +
 "\n").getBytes());
 }
 i.remove();
 }
 }

 protected void finalize() throws Throwable
 {
 flush();
 super.finalize();
 }
}

The example is fairly big and complicated and there are some reasons for this. First is that you
will need to have a buffer for each instance of the FileOutputStream but aspects is as default
singleton. The problem you get if you instead change the aspect so it is ” pertarget„ is that the
AspectJ compiler has to change in the FileOutputStream and you don�t have the source for

Gustav Evertsson 2002-11-20 PAD004

 - 10 -

that file. And even if it could change it is it risky to change something that you don�t have the
code for. The solution is to have a list of all the buffers and keep the aspect as singleton. The
second reason is that the flushing is normally taken care of by the application and must now
be done in the aspect. This is done by starting up a thread that flushes the buffer every three
second. It will also be flushed if it is explicitly closed.

Pooling
Pooling is most used to speed up database connections by not connect to the database every
time a query is executed. This can save a lot of time if the database is used in many places
like it is in many web applications.

package aspects;

import java.sql.*;
import java.util.*;

public aspect Pooling
{

 private static Stack pool = new Stack();

 pointcut poolGet(): call(static
 Connection DriverManager.getConnection(..));
 pointcut poolPut(): call(void Connection.close());

 Connection around() throws SQLException: poolGet()
 {
 synchronized(pool)
 {
 if(pool.empty())
 {
 return proceed();
 }
 return (Connection)pool.pop();
 }
 }

 void around(): poolPut()
 {
 Connection conn = (Connection)thisJoinPoint.getTarget();
 pool.push(conn);
 }
}

This example contains a stack of connections that override the getConnection and close
methods. So every time the system asks for a connection will the aspect instead see if it
already exist one. If it has one will that be returned and if not will it be created in the normal
way. And when the system is finished will the connection instead of being disconnected be
placed in the pool so it can be reused.

Caching
The example below is from a news service there each user has it own list of filtered news
stories. So the caching must be divided so each user has its own cached list. The problem with
caching is that it is hard to make a domain independent solution that can be used for
crosscutting the whole system. But it can still be used to make a clean and transparent
performance improvement.

Gustav Evertsson 2002-11-20 PAD004

 - 11 -

package aspects;

import java.sql.*;
import java.util.*;

public aspect ReadCache
{

 private static Map cache = new HashMap();

 pointcut read(String user):
 call(Collection StoriesDb.retrieve(String)) && args(user);

 pointcut dirtyUser(String user):
 call(* StoriesDb.savePreferences(String, ..)) && args(user);

 pointcut dirtyAll():
 call(* StoriesDb.saveStory(..));

 Collection around(String user) throws SQLException: read(user)
 {
 Collection res = (Collection)cache.get(user);
 if(null == res)
 {
 res = proceed();
 cache.put(user, res);
 }
 return res;
 }

 after(String user): dirtyUser(user)
 {
 cache.remove(user);
 }

 after(): dirtyAll()
 {
 cache.clear();
 }
}

The aspects keep an item in the cache list per user. The list for a user will be inserted into the
list the first time the user tries to get something. Then if he/she changes his preferences so the
contents of the list may have changed will it the deleted and reloaded the next time that user
tries to access a story again. The cache will be deleted for all users if a new story is saved.

Gustav Evertsson 2002-11-20 PAD004

 - 12 -

Coping with Change
It is not unusual that the environment around the system change. And aspect can be used to
cope this.

New Logging
This example is used in Servlets. The problem here is that you want to control the build in
logging to instead of writing to a file write to the console. This can be done by changing all
calls to the log method to instead write it to the console. The drawback is that it can be a lot of
places that need to be changed. The aspect can instead pick all calls to the log method and
output the message.

package aspects;

import javax.servlet.*;

public aspect NewLogging
{
 void around(String message) :
 (
 call(void GenericServlet.log(String))
 ||
 call(void ServletContext.log(String))
)
 && args(message)
 {
 System.out.println(message);
 }

 void around(String message, Throwable ex) :
 (
 call(void GenericServlet.log(String, Throwable))
 ||
 call(void ServletContext.log(String, Throwable))
)
 && args(message, ex)
 {
 System.out.println(message);
 ex.printStackTrace(System.out);
 }
}

The logging has two log methods that must be pinked, one with only a message and a second
with a message and an exception.

New Pooling
The pooling example described before has a problem. I can�t handle bad connections. There is
many reasons way a connection can�t be used any more like timeouts, if the database is
restated etc. The solution for this is to check the connection before the Pooling aspects
handles them. This is done with the keyword ” dominate„ that tells the AspectJ compiler that
the new aspect will the executed before the Pooling aspect.

package aspects;

import java.sql.*;
import java.util.*;

public aspect ConnectionChecking dominates Pooling
{

Gustav Evertsson 2002-11-20 PAD004

 - 13 -

 Connection around() throws SQLException: call(static
 Connection DriverManager.getConnection(..))
 {
 Connection conn;
 do
 {
 conn = proceed();
 }
 while(bad(conn));

 return conn;
 }

 private boolean bad(Connection conn)
 {
 try
 {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT 2+2");

 if(rs.next())
 {
 rs.getString(1);
 }
 rs.close();
 stmt.close();
 }
 catch(SQLException e)
 {
 return true;
 }
 return false;
 }
}

It will go through all the connections and test them with a dummy query and if they are bad
will they be deleted from the pool.

Gustav Evertsson 2002-11-20 PAD004

 - 14 -

Conclusion
Aspects can be a very powerful tool if it is used in the right ways. Some examples have been
described here in this report but I think we will see more examples of implementations and
new places where AOP can be used in the future. It much depends on how spread the
techniques will be among software developers.

The biggest strength with AOP that I see is that it can in an easy way divide the business logic
code from other types of code. This makes the Object Oriented design easier to read and
understand. The Object can be more specialized in what they are expected to do and the
aspects can take care of the rest.

I think we will see much more of AOP in the future in different areas, especially when the
bigger companies start supporting it such as Microsoft, Sun, and Borland etc. They have the
resources to build good development environments and design tools. And when more
developer�s starts to use it will it becomes a more mature development method.

Gustav Evertsson 2002-11-20 PAD004

 - 15 -

References
1. AspectJ version 1.1a1, http://www.aspectj.org

2. Ivan Kiselev, Aspect-Oriented Programming with AspectJ, 2001, Sams, ISBN: 0-672-

32410-5

