

Aspect Oriented Programming
2002-11-12

By Gustav Evertsson, pt99gev@student.bth.se

Gustav Evertsson 2002-11-12 PAD004

 - 1 -

Contents
CONTENTS................................ 1
INTRODUCTION................................ 2
THE PROBLEM 2
THE ASPECTJ LANGUAGE 3

ASPECTS 3
JOIN POINTS 3
ADVICES 4

DESIGN IMPROVEMENTS................................ 5
DEVELOPMENT................................ 5

Logging................................ 5
Tracing 5
Profiling................................ 5
Errors and Warnings during Compiling................................ 5

PERFORMANCE................................ 5
EXCEPTION HANDLING 6
STATIC CROSSCUTTING................................ 6

CONCLUSION 7
REFERENCES................................ 8

Gustav Evertsson 2002-11-12 PAD004

 - 2 -

Introduction
This paper is written to give an overview of what Aspect Oriented Programming (AOP) is and
what it can be used for. This paper is done as a part of the course Advanced Software
Engineering (pad004) at Blekinge Institute of Technology.

The Problem
AOP is the solution, but the solution to what problem? Object-Oriented (OO) divide the world
in different Objects and components and that can be a problem when it comes to functionality
that cross cut the object world. It can be hard to modularize this into classes. Example of such
functionality can be synchronization, performance optimization, exception handling etc.

Another problem with OO is that you need to decide all the interfaces before any
implementation can start. This is because it is hard to change an interface afterward because it
may change a lot of classes. AOP solves this so you can modify the static structure of them
afterward without changing any code within the classes.

Gustav Evertsson 2002-11-12 PAD004

 - 3 -

The AspectJ Language
The language described here is AspectJ. That is an implementation of AOP in Java which is
developed by Xerox Parc and version 1.0 was released in November 2001. It works as a
precompiler and you can see the generated code which can help a lot during development
before you getting used to the new syntax. It also gives the advantage that the end users don“t
need to install anything special to run the programs except the virtual machine.

AOP is constructed from OO and only extends the benefits that you already have without
taking anything away. Your aspects can have the same functionality as you classes with
instance and static methods, attributes and so on. The aspects can add functionality to the
classes and/or change it without changing the code in them in any way.

Where the aspect is used much depend one what it is used for. If it is temporary, part of the
system or the system can function without it but better with it.

One common implementation is that functionality appears in multiple methods. It may also be
temporary used only during the development. Example of this is logging and error handling.
The solution is to place it just on one place and use that in the entire system. This makes the
code cleaner and less coding is needed.

Example of functionality that can be separated into an aspect is synchronization and
performance optimization. This is functionality that is often used in classes but not a part of
the normal business logic. It is also aspects that can be reused in many classes and also be
reused in different projects.

Aspects
Aspects are for AOP what classes are for OO. It gathers all the functionality inside of it. It can
extend other aspects or classes in the same way as with classes.

Aspect ExampleAspect {
}

This example doesn“t do much; just declare a new aspect with the name ”ExampleAspect„.

Join Points
It is with join points you decide where the aspects is executed. AspectJ includes 11 different
join points. From a normal method call to more advanced join points such as ”within„ and
” target„. The join points can be combined as a boolean expression. Many of the different join
points take the name of the class and/or method as a argument and AspectJ accept ”*„ and ” ..„
as wildcards their.

Aspect ExampleAspect {
 pointcut p() : call(int ExampleClass.*(..));
}

A join point has been added to the previous example. This join point is fired every time a
method in the ”ExampleClass„ is called that takes zero or more arguments and returns an
integer.

Gustav Evertsson 2002-11-12 PAD004

 - 4 -

Advices
Advices are the executable part of the Aspects. It defines what code to run when a join point
is fired. It exist three basic kinds of advices; before, after and around. They all works as a
method call with some limitations. The before and after advices can“t return anything and
around must return the declared type. Before and after advices are executed as it sounds
before or after for example methods calls and around replace the method calls.

Aspect ExampleAspect {
 pointcut p() : call(int ExampleClass.*(..));

 before() : p() {
 System.out.println(”Hello World!�);
 }
}

The previous added pointcut is now handled by the new advice.

Gustav Evertsson 2002-11-12 PAD004

 - 5 -

Design improvements
The main design improvement you get with AOP is better modularization. Redundant code
can be placed in an aspect instead of copied to all classes that need it. You can concentrate on
putting the business logic in the classes and the rest can be handled with Aspect. This makes
the code easier to read and inspect. But the aspect can also very easy make the code harder to
follow because if you don“t know about the pointcuts will you don“t know what“s happening
by just follow the logic path of the code. This can specially be a problem if the design is
changed later during the development and functionality is added with aspects.

Development
On big advantage with AOP is that you can put the debugging code outside the normal code
and can easily turn it on when you need it and off when you compile the final version. In
normal case is it hard to handle this type of code. You don“t want it in the final version but
you need it for maintenance so it may not be the best idea to just delete it either.

Logging
Put a point cut on all method calls except the output method. Then make an advice that
implement before() and output the method name and all the parameters.

Tracing
Extend the logging functionality so it has an after() advice too. And add a stack that push
when before() is called and pop when after() is called. With this small implementation can all
method calls be tracked and faults can be found without changing the code in any ways.

Profiling
If performance is a problem must the bottlenecks be found and this can be a time consuming
task in a normal project. But with some help from AOP can this be done with a few lines of
code. You only have to change the tracing example so it has a timer and outputs the difference
from the before() to after() calls.

Errors and Warnings during Compiling
The AspectJ compiler has a function to find warnings and errors during compiling with the
help of pointcuts. The only limitation is that it does not accept pointcuts that needs runtime
information. This can be used to check that code standards is followed and classes that needs
to be executed in a special way is that.

declare warning: call(ExampleClass.new(..))
”Constructor Called!�;

This example outputs a warning if the constructor of the ”ExampleClass„ is called.

Performance
Aspects can also be used to improve the performance of the system. This type of functionality
in normally used within many classes and it can therefore be hard to find a good place to put
them. Instead can you put them in an aspect and use that in the entire system. Example of this
type of functionality is polling, caching, buffering etc.

Gustav Evertsson 2002-11-12 PAD004

 - 6 -

Exception handling
The normal case is that you want to terminate the current function and output an error
message to the user. Because this is handled in almost the same way in the entire program can
it be a good idea to put this in an aspect. The handler() pointcut picks an execution of an
exception handler.

Static Crosscutting
Aspects can in many ways drastically change how the original class works. Aspects can also
change the static structure by adding fields and methods and even change the class
hierarchies. This can be very powerful tool and you can change the original class beyond
recognition.

declare parents: ExampleClass extends ExampleParent;

This example changes the ”ExampleClass„ so it extends ”ExampleParent„. All methods must
be implemented if new abstract methods are added; they can already be implemented or added
by aspects.

Gustav Evertsson 2002-11-12 PAD004

 - 7 -

Conclusion
AOP is a very powerful tool that I think will become much bigger in the future. But for now is
too much of an academic project and under development to be really useful for a bigger
audience. More research and standards is needed such as design and usage patterns.

AOP and AspectJ have a lot of advantages and I especially like the way it helps with the
coding and debugging such as the way logging and tracing can easily be implemented.

Gustav Evertsson 2002-11-12 PAD004

 - 8 -

References
• AspectJ version 1.1a1, http://www.aspectj.org

• Ivan Kiselev, Aspect-Oriented Programming with AspectJ, 2001, Sams, ISBN: 0-672-

32410-5

• Nicholas Leidenfrost, An Introduction to Aspect Oriented Programming with AspectJ

• Elizabeth A. Kendall, Aspect-Oriented Programming in AspectJ

